If it's not what You are looking for type in the equation solver your own equation and let us solve it.
h^2+6h-8=0
a = 1; b = 6; c = -8;
Δ = b2-4ac
Δ = 62-4·1·(-8)
Δ = 68
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{68}=\sqrt{4*17}=\sqrt{4}*\sqrt{17}=2\sqrt{17}$$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{17}}{2*1}=\frac{-6-2\sqrt{17}}{2} $$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{17}}{2*1}=\frac{-6+2\sqrt{17}}{2} $
| |x|=4.7 | | 5(c−0.15)=2.50 | | 1/2y=10.3 | | 0.5x^2=18 | | 25*4-125/25*x=100 | | -15x-14=-7-16x | | 5=2a=4 | | 9+9x=9-9x | | 7x^2-56x-343=0 | | 8(20+x)=216 | | 5(x=8)=2x-7+8(x-1) | | 10k−8k=16 | | -19x+17=-20x+35 | | 2(x+7)^2=34 | | 17(x+16)=323 | | 3(x+5)=11x-1 | | 0=(n-2)(n-6)-10(n+4) | | -14x+4=19-15x | | 6x-18=5x+7 | | 17x-10=-7+16x | | 2w+((7+w)+2)=42 | | X+(x+40)+(x-10)=360 | | –4x–20=–8x–8 | | 16(x~3)=~80 | | 2x5−12=x5 | | 50-4x=3x+8 | | 8(n~1)=52 | | 1/2x^2+3/4x=0 | | 21x=7+7x | | 15b=30 | | 2x/3=37 | | c2-3c=0 |